Estimating nonlinear receptive fields from natural images.

نویسندگان

  • Joaquín Rapela
  • Jerry M Mendel
  • Norberto M Grzywacz
چکیده

The response of visual cells is a nonlinear function of their stimuli. In addition, an increasing amount of evidence shows that visual cells are optimized to process natural images. Hence, finding good nonlinear models to characterize visual cells using natural stimuli is important. The Volterra model is an appealing nonlinear model for visual cells. However, their large number of parameters and the limited size of physiological recordings have hindered its application. Recently, a substantiated hypothesis stating that the responses of each visual cell could depend on an especially low-dimensional subspace of the image space has been proposed. We use this low-dimensional subspace in the Volterra relevant-space technique to allow the estimation of high-order Volterra models. Most laboratories characterize the response of visual cells as a nonlinear function on the low-dimensional subspace. They estimate this nonlinear function using histograms and by fitting parametric functions to them. Here, we compare the Volterra model with these histogram-based techniques. We use simulated data from cortical simple cells as well as simulated and physiological data from cortical complex cells. Volterra models yield equal or superior predictive power in all conditions studied. Several methods have been proposed to estimate the low-dimensional subspace. In this article, we test projection pursuit regression (PPR), a nonlinear regression algorithm. We compare PPR with two popular models used in vision: spike-triggered average (STA) and spike-triggered covariance (STC). We observe that PPR has advantages over these alternative algorithms. Hence, we conclude that PPR is a viable algorithm to recover the relevant subspace from natural images and that the Volterra model, estimated through the Volterra relevant-space technique, is a compelling alternative to histogram-based techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of localized oriented receptive fields by learning a translation-invariant code for natural images.

Neurons in the mammalian primary visual cortex are known to possess spatially localized, oriented receptive fields. It has previously been suggested that these distinctive properties may reflect an efficient image encoding strategy based on maximizing the sparseness of the distribution of output neuronal activities or alternately, extracting the independent components of natural image ensembles...

متن کامل

Receptive Field Encoding Model for Dynamic Natural Vision

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

متن کامل

Spatial Structure of Complex Cell Receptive Fields Measured with Natural Images

Neuronal receptive fields (RFs) play crucial roles in visual processing. While the linear RFs of early neurons have been well studied, RFs of cortical complex cells are nonlinear and therefore difficult to characterize, especially in the context of natural stimuli. In this study, we used a nonlinear technique to compute the RFs of complex cells from their responses to natural images. We found t...

متن کامل

Nonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation

The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common pri...

متن کامل

Localized Receptive Fields May Mediate Transformation-Invariant Recognition in the Visual Cortex

Neurons in the visual cortex are known to possess localized, oriented receptive fields. It has previously been suggested that these distinctive properties may reflect an efficient image encoding strategy based on maximizing the sparseness of the distribution of output neuronal activities or alternately, extracting the independent components of natural image ensembles. Here, we show that a relat...

متن کامل

Nonlinear Hebbian learning

The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common pri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 2006